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angle is only 5 degrees it is sufficient to account for the
presence of higher order propagating waves at wave-
lengths noticeably longer than the theoretical Ap=5. In
a typical case the higher waves were first noticed at
Ao=9.8 cm compared to 9.5 cm at which point they
caused considerable distortion.

The calculated curves in Figs. 7-13 were obtained
from the variational expressions using the fourth ap-
proximation. An estimate of the error showed the mag-
nitude of the reflection coefficient to be within 1 per
cent and the phase within 2 degrees.

CONCLUSION

The experimental results given are typical of a large
number taken from about ten specimens and the agree-
ment between theory and experiment is of the same
order throughout. Allowing for the inherent error of
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the transmission line the worst error is —5 per cent for
the magnitude of reflection coefficient and within 5
degrees for the phase. Apart from the region of inter-
ference mentioned above, the thick plate theory ap-
pears to be quite satisfactory. Departures from this
theory are believed to be due to the difference between
the ideal and practical situations, mainly in regard to
the imperfect means of plane wave excitation. Further
study of the higher order propagating waves is required,
although in general it is not desirable to have these
higher orders present. It is worth noting that for a
constant refractive index, the reflection at a single
interface can actually be reduced by intentionally in-
creasing the plate thickness, up to the point at which
the first higher order wave starts to propagate.

The solution for arbitrary plane wave incidence offers
no fundamental difficulty and is being extended.

The Characteristic Impedance of Trough and Slab Lines*

ROBIN M. CHISHOLMf{

Summary——A variational method is used to develop an expression
for the characteristic impedance of a ‘‘trough line” consisting of a
circular cylinder mounted inside and parallel to the walls of a semi~
infinite rectangular trough. The “‘slab line” consisting of a circular
cylinder between infinite, parallel plates is treated as a special case
of the trough line in which the bottom of the trough is taken to be
infinitely remote from the circular cylinder. The solution has not
been restricted to cylinders that are mounted exactly half way be-
tween the parallel walls of the trough; a simple formula is presented
for calculating the tolerances which must be placed on the ‘‘center-
ing” of the center conductor for a given allowable error in the char-
acteristic impedance.

The expression for the characteristic impedance is presented as
the sum of three terms. The first is a ‘‘zero order” logarithmic term,
the second a ‘‘second order” correction term which vanishes as the
center conductor becomes infinitely small, and the third is an ‘‘off-
center” correction term which arises when the cylinder is not ex-
actly half way between the parallel walls of the trough. The second
order correction term amounts to about 0.3 ohms when the charac-
teristic impedance is of the order of 50 ohms. A fourth order approx-
imation using the same method changes this by about 0.001 ohm.

INTRODUCTION

IFFICULTIES in manufacturing slotted lines
for coaxial systems have led to the investigation
of special types of coaxial lines for this purpose.

* This work was supported in part by the Res. Council of On-
tario, and by the Def. Res. Board of Canada, project number 5540-02.
T Dept. of Elect. Engrg., Univ. of Toronto, Toronto, Can.

The present work is concerned with finding the charac-
teristic impedance of two special types of two-conductor
transmission lines which can be used for standing wave
measurements. The “trough line,” illustrated in Fig. 1,
consists of a circular cylinder mounted inside and paral-
lel to the walls of a rectangular trough. The “slab line,”
consisting of a circular cylinder between infinite, paral-
lel planes, can be considered as a special case of the
trough line in which the bottom of the trough is infi-
nitely remote from the circular cylinder. The line is ex-
cited in the TEM mode by a generator connected be-
tween the circular cylinder and the walls of the trough
and propagation is along the axis of the cylinder.

The practical difficulties involved in constructing co-
axial slotted lines and the application of “slab lines” to
the problem have been discussed in a paper by Wholey
and Eldred.! These authors developed a solution for the
“slab line” using conformal mapping to match the outer
conductor everywhere and the inner conductor at four
points which was accurate to about 0.1 ohm for char-
acteristic impedances of the order of fifty ohms. Frankel?
treated both the “trough line” and the “slab line” using
conformal mapping for the case of an infinitely thin
center conductor and, although a different method is

!'W. B. Wholey and W. N. Eldred, “A new type of slotted line
section,” Proc. IRE, vol. 38, pp. 244-248; March, 1950.

% S. Frankel, “Characteristic impedance of parallel wires in rec-
tangular troughs,” Proc. IRE, vol. 30, pp. 182-190; April, 1942.
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TROUGH LINE

Fig. 1—The trough line.

used, the present work yields Frankel’s expressions plus
a correction term which vanishes for small wires.
Wheeler® has recently treated the “slab line” using a
pair of line sources to represent his assumed field vary-
ing their displacement in order to match the bound-
aries.

In the present work the “trough line” is treated direct-
ly by a variational method with the “slab line” taken
as a special case. The solution has not been restricted
to lines in which the center conductor is placed exactly
half way between the parallel walls of the trough. The
final result for the characteristic impedance is pre-
sented as the sum of three terms, the first being the
“zero order” term of Frankel, the second a “second
order” correction term which vanishes as the center
conductor becomes small, and the third an “off-center”
term which is proportional to the square of the distance
the center cylinder is from the center line between the
paralle] planes.

FORMULATION OF THE PROBLEM

It is a well known result of wave theory that a loss-
less, coaxial structure of uniform cross section propa-
gates all frequencies at the velocity of light and the
electric field at any cross section at a given instant is
identical in form to the electrostatic field that would
occur if a static charge were placed on the center con-
ductor. The characteristic impedance and velocity of
propagation of any uniform, two conductor, lossless
transmission line are given by

s H. A. Wheeler, “The transmission properties of a round wire

between parallel planes,” Wheeler Monographs No. 19, Wheeler Lab-
oratories Inc., Great Neck, N.Y.; 1954.
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Zy = (L/C)Y? ohms (1)
v = 1/(LC)"? meters per second (2)

where L is the inductance of the line in henries per
meter and C is the capacitance of the line in farads per
meter. The inductance L can be eliminated between (1)
and (2) giving

Zs = 1/(C); v = 2.99796 X 10® m/sec. 3)

The capacitance can then be found from the ratio of
electrostatic charge on the center conductor to the volt-
age between conductors which would result from this
charge. Let Q be the total charge per meter on the cen-
ter conductor which is distributed around the periphery
with a surface density p(¢) so that

0= f o(@)bd(9) @

where b is the radius of the center conductor as shown
in Fig. 3.

The electrostatic field can be expressed in terms of a
Green’s function G(r’, ¢’, r, ¢,) for the region. This
function can be looked upon as the potential at point
r, ¢ due to unit line charge at 7/, ¢’ [and of course sub-
ject to the boundary conditions that G(r’, ¢/, 7, ¢) =0
if , ¢ is a point on the wall of the trough]. Using this
representation the electrostatic field is given by the
potential function

Vr, ¢) = (1/¢) f o (@)G0, & 00 ()

since the total charge in the region lies on the periphery
of the cylinder where 7' =5.

The charge distribution p(¢) is still unknown but is
subject to the restriction that, for points on the cylinder
(r=0b), the potential must reduce to a constant value
for all ¢. This leads to an integral equation for p(¢) of
the form

27

Vo= /9 [ @168 b oI (©)
0

which can be solved using a variational method (Ap-

pendix I) to give a very rapidly converging expression

for the capacitance C.

Tue GREEN's FUNCTION

The function G(r, ¢, r/, ¢'), which is interpreted as
the electrostatic potential in the region due to unit line
charge, must obey the same boundary conditions as
the desired potential function V(r, ¢). These are,
namely, that it vanish on the walls of the trough and at
large distances to the left of the page in Fig. 3. In addi-
tion the Green’s function must be symmetric in the
primed and unprimed coordinates. It is a simple matter
to verify that if G(+’, ¢, 7, ¢) in (5) obeys



168

VIG(Y, ¢', 7, ) = — 8(¢p — &) (N

where V? is the Laplacian operator in two dimensions
and 8(r—r’) is the Dirac delta function, then V as
given by (5) obeys the proper Poisson equation for the
problem.

The function which obeys (7) and the proper bound-
ary conditions can be readily found* and is expressible
in rectangular coordinates as
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which is stationary with respect to small variations in
the form of the function p(¢) about its correct form. As
outlined in the appendix, to use this method, a trial
function containing a number of arbitrary parameters is
substituted for p(¢) in (9). The trial function used in
this problem is of the form

1
G\ 9y, x, ) = ﬂ[log
2%

— log,

p(¢) = (Q/4mb*) (14 a1 cos +az cos 2¢ + - + - &, COS nep
4+ -+ +Bysin ¢+ B2 sin 2¢4- - - - B, sin wg).  (10)
1 — exp (i(x/a)(y + ¥) — (n/a) [ & — &/|)
"1 — exp (i(n/a)(y — ¥) = (x/a) | = = &)
1 — exp (i(r/a)(y + ¥) — (n/a)(x + & — 26))] )
1 —exp (i(x/a)(y — ¥) — (x/a)(x + 2" — 20))

In this formula a is the distance between the parallel
plates of the trough (see Fig. 2) and c¢ is the distance
from the center of the cylinder to the bottom of the
trough. For the “slab line” ¢ becomes infinite and the
second term of (8) approaches zero.

| t}E

Fig. 2—The cross section of a slab line.

THE VARIATIONAL EXPRESSION

The variational expression for the problem is (see
Appendix I)

[ o606, 900000
/C =" " 9)

| J o

¢ This is found by assuming G(x’, ¥/, x, ¥) to be expressible as a
Fourier series in ¥ and %' with coefficients which are functions of
x and x'. The series is substituted in (9) and the resulting series
expressed in closed form.

The more terms taken the more accuracy can one ex-
pect. Once (10) is substituted in (9) for p(¢) the inte-
grals involved can be evaluated as explicit functions
(see Appendix II) of the known parameters a, b, ¢, and
8 (see Fig. 3) and the 2z parameters ay - - - @, and
B1 - - - Bs. The amplitude factor Q/4wb® cancels out
since it appears to the same power both in the numer-
ator and in the denominator of (9).

vja —ﬂ

Nja

<
<
L)
[e]e

X

c

Fig. 3—The coordinates used in describing a trough line.

When the integration has been carried out (9) can
be written in the form

n

€ n n
— = 2 omX ik 2 D af Vit 3 BBz

C k=0 1.0 Py

(11)

where ay=1 and 80=0 by definition and X7-*, ¥** and
Z7% are the known functions defined in Appendix II and
tabulated in Table I which result from the integrations
involved in (9) when the trial function of (10) is inserted
for p(#). These turn out to be simple functions of the
parameters a, b, ¢, and 8, and some of the functions

used to develop the “second order” approximations are
tabulated in Tables I and II.
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am ar
xik = g = Wam) [ [T cos (i#) GO, o, b, 9) cos (k) de'd
[ )

TABLE 1
Tue FuNcrion
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i k (¢/a) infinite (c/a) =(3/4) (¢/a)y=(1/2) (c/a)=(1/4)

0 1 0.000 —0.004491 (b/a)? —0.02165(b/a) —0.1086(b/a)

0 2 10.06545(b/a) +0.05840(b/a)? 10.03132(b/a) —0.1206(b/a)

1 1 +0.0397887 +0.0397887 +0.0397887 +0.0397887
~0.06545(b/a)? ~0.07250(b/a)? ~0.09958(b/a)? ~0.2515(b/a)?

1 2 0.000 —0.01109(6/a)? —0.05421(b/a) —0.3693(b/a)*

2 2 —+0.0198944 +0.0198944 +0.0198944 -0.0198%44
20.1130(b/a)* ~0.1305(b/a)* ~0.2010(b/a)* ~1.092(5/a)*

TABLE I1

SomE TypicaL FuNcrtioNs oF THE TYPE

o o
Vit = f f cos {j¢") G(b, ¢', b, &) sin (k) do'de (¢/a) = (1/2)
0 ¢

k

. 0 1 2

N
0 0.000{ —0.1652(28/a)(b/a) +0.04493(25/a) (b/a)?
1 | 0.000 | +0.04493(25/a)(b/a)2| —0.1836(25/a)(b/a)?
2 0.000} +0.3009(25/a)(b/a)? | 4+0.05803(26/a)(b/a)*

Eq. (11) can be differentiated with respect to the
parameters «; and B; yielding 2(#-+1) linear, homo-
geneous equations of the form

0= (Xik+ BVi®y =12 -n

k=0

(12a)

n

0=, (X4 BZi%)  j=1,2,3---n

k=0

(12b)

When the fact that apy=1 and 8o =0 is used these reduce
to 2z nonhomogeneous equations which can be solved
for the az's and B4's by standard methods, Substitution
back into (11) then yields an expression for the capaci-
tance C.

PRACTICAL SOLUTIONS

For the results presented here n was taken to be 2
yielding four equations in four unknowns,

X1 4 @ X134 BV BV L2 = — X0 (13a)
X 4 X2 4 BV 4 B2 = — X20 (13b)
V10 4 @bl G211 G221 = — YO (13c)
V2 T2 4 B2V 22 = — ¥ (13d)

It can be shown that all of the functions Y7* and all
of the coefficients 8; are proportional to (§/¢) where &
is the distance by which the cylinder is “off-center” in
Fig. 2. This means that, for small values of (§/a), the
third and fourth terms in (13a) and (13b) may be neg-
lected introducing an error in a; and as of the order of

(8/a)?. This approximation becomes exact as § ap-
proaches zero and using it assumes that moving the
cylinder “off-center” does not make an appreciable
change in the amplitudes of the cosine terms in the
series for the charge distribution p(¢).* The values of
oq and o, found from (13a) and (13b) can then be sub-
stituted into (13c) and (13d) from which 8y and 3; can
be found using Cramer’s rule in terms of a 2X2 de-
terminant. Since (11), which is used to find the ca-
pacitance C, is stationary with respect to variations in
the parameters o; and 8; this approximation is valid to
within an error of the order of (8§/a)%

When the cylinder is exactly centered between the
parallel walls of the trough the second order approx-
imation, given by (11) with # taken equal to 2 and using
(3) for the relation between the characteristic imped-
ance and the capacitance, is simply

Zy = Z5(X00 4 20, X010 + 20, X092 4 2oy, X102

+ (a)?X'! + (a2)?X?2). (14)

where Z, is the characteristic impedance of the line in
ohms and oy and a», using the approximations of the
preceding paragraph, are given by

X1e  Yue
X220 Y22

ap = — i s (15a)
X1 xee
X1l Y10
X2t X2

ay = — BN (15b)
X2,1 X2,2

5 The function X/*, however, changes by order (3/a)* when the
cylinder is moved “off-center” and this change must be taken into
account because the variational expression is stationary only with
respect to variations in the coefficients ; and 8; and not with respect
to changes in the integrals Xi-*, Vi*, and Zi-*,

6 Zrs is the wave impedance of free space taken in the present work.
to be 376.735. This is based on Michelson’s value (1926) for the
velocity of light in free space, 2.99796X 108 m/s. Other conditions
shou%ld be adjusted accordingly from the values found from these
graphs,
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The function X%° which is the “zero-order” term is
just that found by Frankel® for a thin wire in a rectan-
gular trough namely

1 2a me
X% = —log, (— tanh —
27 b

i a

(16)

while the other X7#s which appear in the formula are
given in Table 1.

SIMPLIFIED FORMULAS

When (15a) and (15b) are substituted into (14) an
explicit formula for the characteristic impedance re-
sults. Several terms of the initial substitution cancel
out and, when the expressions in Table I are used for
the X7¥s, (14) becomes

e

2a
Zy = Zfs [(1/27) IOge (—’ tanh ——)
b

2
NiR 4 N:R? 4 N3R3
(17a)
14+ DiR 4+ D:R?> 4+ D3R?

where R= (b/a)*.
The coefficients N; and D; are given in Tables I1I and
1V respectively for different values of the ratio ¢/a.

TABLE III

Tae CorrrFICIENTS N; T0 BE Usep IN (17) AND (19) FOR THE
CALCULATION OF THE SECOND ORDER CORRECTION TERM

i
1 2 3

1/4 —0.2966 —0.7312 +-8.680

1/2 —0.01177 —0.04932 --0.3353

3/4 —0.0005068 —0.1714 +0.3220

infinite 0.000 —0.2153 ‘ 0.000
TABLE IV

TuE CoEfFFICIENTS D, T0 BE USED IN (17) AND (19) FOR THE
CALCULATION OF THE SECOND ORDER CORRECTION TERM

J
1 2 3
m '
1/4 —6.321 —54.90 +174.8
1/2 —2.503 —10.11 + 21.58
3/4 —1.822 — 6.539 -+ 11.80
infinite 0.000 — 5.682 0.000

For the “slab line” [(¢/a) infinite], the numerator
and denominator of the second term on the right hand
side of (17a) have a common factor and the expression
further simplifies to

Zo =2, [(1/%) log, (;2;9

0.2153R?

T 5.682R2] (175)

where, again, R=(b/a)%.
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Orr-CENTER CORRECTIONS

Perhaps the most interesting result of this investi-
gation is the formula for the change in characteristic
impedance which results when the cylinder is moved
slightly “off-center” from between the parallel planes.

When § in Fig. 2 is not equal to zero the coefficients
B: and B2 in (13a) to (13d) do not vanish and when the
series (11) for €¢/C is terminated for j,k=2, additional
terms to those given in (14) result in the expression for
¢/C all of which, to within 0(§/a)* are proportional to
(6/a)?. In addition to these extra terms all of the
X?#¥g undergo a change of order (§/e)? also which must
be taken into account. This change can be included with
the extra terms which result when the cylinder is moved
“off-center” allowing the total change in characteristic
impedance, which is always less than zero, to be writ-
ten in the form

AZy = — a[(b/a), (¢/a)] X (8/a)*. (18)

The parameter o which depends on the ratio b/¢ and
¢/a has been calculated for a set of values of these ratios
and graphs, sufficiently accurate for purposes of compu-
tation, of & vs b/ with ¢/e¢ as a parameter are given in
Fig. 5.

FUrRTHER CALCULATIONS

Tables have been prepared of the functions X?#,
Vik, Zik and AX?* [the change in the value of Xv*
when the cylinder is moved off center by an amount §
is AX7kX (8/a)?] up as far as j,b=4 enabling the cal-
culation of a fourth order approximation. All of these
functions are simple one or two term polynomials in the
ratio (b/a).

A fourth order approximation has been worked out
for the “slab line” in the region of fifty ohms. The dif-
ference between the second order and fourth order
answers was only 0.001 ohms or one part in ffty
thousand.

CONCLUSION

Second Order Formulas

The characteristic impedance of the trough line illus-
trated in Fig. 1 is given by

2a e
YA =6Zfs [(1/27[‘) IOgg <— tanh —“>
b a

NiR -+ NyR? + N;R? :i
14 DiR + DyR*  D;R3

— a[(b/a), (¢/a)] X (3/a)? ohms,  (19)

where R=(b/a)? and b is the radius of the cylinder, a
is the spacing between the parallel walls of the trough,
¢ is the distance from the center of the cylinder to the
bottom of the trough and § is the distance the center of
the cylinder is displaced from the center plane between
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the parallel plates. The coefficients N; and D, are given
in Tables III and IV respectively and the coefficient
a(b/a), (c/a) is plotted in Fig. 5 as a function of (6/a)
with (¢/a) as a parameter. The second term on the right
hand side of (19) multiplied by Z;, =376.735) is plotted
in Fig. 4 to a logarithmic scale.

8 /,
//
4 A A
c/a=1/4 //
2
c/a infinite / ~
—
1 o7
v 7
£ c/asll2—s" /]
<
© V//(c/m 3/4
ol J, 77 t
- —_— A A {
~ = [ 2a wey |
- Zo- 59-9\)9 |Oge(a—5fonh7)
V4 =gy —
l g a
0.0l ! ] l | |
' — a= Spacing between parallel walls
b= Cylinder radius E
¢= Distance from center of _'
cylinder to bottom of trough.
o.002 | I [ )
010 0I5 020 025 030 035 040 045

The Ratio b/a—

Fig. 4—The second order correction term for the trough line. Value
found from this graph are to be subtracted from the zero ordes
logarithmic term,

59.959 log, [(2&_;) tanh 2% |.
o a

For the “slab line” [(c/a infinite] (19) reduces to

p o7 [(1/2 Y <2a> 0.2153R?2 ]
=7, oge(—)— ———
0T 08\ 05 T 1+ 5602k

— a(b/a) X (8/a)? ohms

where R=(b/a).

As (b/a) approaches % the results break down since
the charge distribution p(¢) in the electrostatic model
used for calculating ¢/C approaches the delta function
6(¢ - (n+3)w). The Fourier series for such a distribu-
tion has all of its terms of equal magnitude and cutting
the series in (10) off at # =2 represents a very poor ap-
proximation. In practice, however, such large cylinder
sizes should be avoided as the capacitance depends very
critically on the nature of the surface in the region where
the cylinder and the wall almost touch.

(20)

Tolerances on the Centering of the Cylinder

If Z, is the maximum variation in the characteristic
impedance of a trough line which can be tolerated then,
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from (18), the maximum allowable error in the position-
ing of the cylinder is given by

AZO 1/2
6= ax(—)
[44

where a can be found from Fig. 5 as a function of (h/a)

and (c/a).

(21)

c»hmsI : : . l
N N 2
LO((b/ 9, c/a) Azoz'o((b/a,c/o) X (%) //
800 //
700 PRI /
c/a infinite
160 4'
y c/a=
500 / i 39
40 /,/ ~
7| _<lenm1e
300 — -
3E’____
200 Lron=i/a
P e
0 0Ol 0.2 0-3 0.4 05

Fig. 5—The “off-center” correction coefficient. The coefficient «
found from this graph, when multiplied by (5/2)% where o is the
spacing between the parallel planes, gives the correction term to
be subtracted from the regular formula for the characteristic im-
pedance whenever the center of the cylinder is off the center
line between the parallel planes by an amount 8.

ArPENDIX I
THE VARIATIONAL EXPRESSION

The problem under consideration is the solution of an
integral equation of the form

27
Vo = f p(#)G (B, &, b, 6)bde. (22)
h)

Morse and Feshbach? treat the general problem of find-
ing a solution to the equation

L) = M) (23)

by a variational method where ¥ is the unknown func-
tion and £ and YN are differential or integral operators.
If one sets

Y= P(¢):

o) — 1/c f

7 P. M. Moresand H. Feshbach, “Methods of Theoretical Physics”
McGraw-Hill Book Co., Inc., New York, N.Y., 1st ed., vol. 2, p.
1106; 1953.

(24)

p(6)G(, ¢, b, ¢)bde’ (25)
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which is a function of ¢ in the region 0<¢ =27,

() = f o(¢)bde’ (26)

0

and A=1/C where C=Q/V,, the static capacitance,
then (23) becomes

1/e f oG, &, b, )bds
= (1/0) f To(@)bds = Vo (27)

0

which is the integral equation to be solved. C or 1/C is
the quantity desired and it is shown by Morse and
Feshbach?® that

[ vewav
Al =6} ——— =0
[

(28)

with respect to arbitrary variations of ¥ about its cor-
rect value. Interpreting ¢, &, M, and N as in (24)—(26)
this yields

1
i =
C

—

27 2x
f o(6) f G(b, 6, b, &")o(@")b*dds’
0 4]

€ 2T 27
f f p()p(8")D*dds’
] 0

= 0, 29)
This means that (9) is stationary with respect to arbi-
trary variations in the form of p(¢) about its correct
form.

To use this method a trial function is put in (9) for
p(#) which contains n arbitrary parameters ¢y - - - @n.
Differentiating with respect to these parameters and
equating the results to zero leads to # homogeneous,
linear equations in the # unknown «’s.?

ArPENDIX II

EVALUATING THE INTEGRALS INVOLVED IN THE
VARIATIONAL METHOD

When p(¢) in (9) is replaced by the series of (10) and
use is made of the orthogonality properties of the trig-
onometric functions to give 4#2? for the denominator
of the right hand side of (9), ¢/C can be expressed by
the series in (11) where integrals of the following type
are encountered

8 Ibid., p. 1109 (9.4.8).
8 Itid., p. 1107.
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X7k
1 2T 27

= Z:f f cos (j$)G(b, ¢/, b, &) cos (kg'Vdpdd' (30)
T 0

Yik
1 27 2T

= Z;f f cos (j(;S)G([;y &', b, ) sin (k¢ )dde’ (31)
78 o 0

Zik

1 27 2T
-~/ f sin (j9)G(5, &', b, ¢) sin (ke')dpde’. (32)
4r?J 0

These integrals depend on the parameters j and 2 and,
through the Green's function G(b, ¢’, b, ¢), on the di-
mensions a, b, and ¢ of the transmission line.

These integrals can be evaluated by removing the
singularity from G(r', ¢’, r, ¢) at r=7', ¢ =¢’ and using
the following lemma. If V%(r,¢)=0

27
f W(r, @)éeds
0

7.0,9-0 ar

= 27 Limit ¥(r, ¢)

7.0,8.0

ar d
= (r/nl)r!* Limit n[l + (i/n) 34—)] Y(r,¢) form #=0,
n

= Q0. (33)
The differentiations involved, if carried out directly,

are rather messy. However it has been found possible

to express the results of this lemma in terms of a set of

functions, represented by a finite power series, the coef-

ficients of which obey a simple repetition formula.
Putting

in
ginz

fr(z) = ———— (34)
1 — ginz
and
(in) (3) = —= &2 (35)
it can be shown that
k
87(2) = 20 et [E0() ["(1 + £7()), (36)

m=1
where the coefficients ¢,* obey the repetition formula
m* = mCm—1®t + 650,

For special values of the argument z, (36) is of a par-
ticularly simple form. For example, one of the functions
which occurs in applying this lemma is

¢i*=1; ¢*=k!; and

i+ k-1

Erpa™P(a) = 3, (=1)m

m=1

Cm1+k+1

it (37)
It is beyond the scope of this paper to go into the details
of these functions beyond pointing out, as seen from
Table I, that integrals of the types under consideration,
when evaluated in this way, come out as simple poly-
nomials in the ratio (b/a).



