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angle is only 5 degrees it is sufficient to account for the

presence of higher order propagating waves at wave-

lengths noticeably longer than the theoretical XO = b. In

a typical case the higher waves were first noticed at

AO= 9.8 cm compared to 9.5 cm at which point they

caused considerable distortion.

The calculated curves in Figs. 7–13 were obtained

from the variational expressions using the fourth ap-

proximation. An estimate of the error showed the mag-

nitude of the reflection coefficient to be within 1 per

cent and the phase within 2 degrees.

CONCLUSION

The experimental results given are typical of a large

number taken from about ten specimens and the agree-

ment between theory and experiment is of the same

order throughout. Allowing for the inherent error of

the transmission line the worst error is — 5 per cent for

the magnitude of reflection coefficient and within 5

degrees for the phase. Apart from the region of inter-

ference mentioned above, the thick plate theory ap-

pears to be quite satisfactory. Departures from this

theory are believed to be due to the difference between

the ideal and practical situations, mainly in regard to

the imperfect means of plane wave excitation. Further

study of the higher order propagating waves is required,

although in general it is not desirable to have these

higher orders present. It is worth noting that for a

constant refractive index, the reflection at a single

interface can actually be reduced by intentionally in-

creasing the plate thickness, up to the point at which

the first higher order wave starts to propagate.

The solution for arbitrary plane wave incidence offers

no fundamental difficulty and is being extended.

The Characteristic Impedance of Trough and Slab Lines*
ROBIN M. CHISHOLM~

Summary—A variational method is used to develop an expression
for the characteristic impedance of a “trough line” consisting of a

circular cylinder mount ed inside and parallel to the walls of a semi-
infilte rectangular trough. The ~%lab line~t consisting of a circular

cylinder between intinite, parallel plates is treated as a special case
of the trough line in which the bottom of the trough is taken to be
infinitely remote from the circular cylinder. The solution has not

been restricted to cylinders that are mounted exactly half way be-

tween the parallel walls of the trough; a simple formula is presented
for calculating the tolerances which must be placed on the “center-
~g~~ of the center conductor for a given allowable error in the chm-

acteristic impedance.
The expression for the characteristic impedance is presented as

the sum of three terms. The first is a “zero order” logarithmic term,
the second a “second order” correction term which vanishes as the

center conductor becomes infinitely small, and the third is an (Coff-
center’~ correction term which arises when the cylinder is not ex-
actly half way between the parallel walls of the trough. The second

order correction term amounts to about 0.3 ohms when the charac-

teristic impedance is of the order of 50 ohms. A fourth order approx-
imation using the same method changes this by about 0.001 ohm.

INTRODUCTION

D

IFFICULTIES in manufacturing slotted lines

for coaxial systems have led to the investigation

of special types of coaxial lines for this purpose.

* This work was supported in part by the Res. Council of On-
tario, and by the Def. Res. Board of Canada, project number 5540-02.

~ Dept. of Elect. Engrg., Univ. of Toronto, Toronto, Can.

The present work is concerned with finding the charac-

teristic impedance of two special types of two-conductor

transmission lines which can be used for standing wave

measurements. The “trough line, ” illustrated in Fig.1,

consists of a circular cylinder mounted inside and paral-

lel to the walls of a rectangular trough. The “slab line, ”

consisting of a circular cylinder between infinite, paral-

lel planes, can be considered as a special case of the

trough line in which the bottom of the trough is infi-

nitely remote from the circular cylinder. The line is ex-

cited in the TEM mode by a generator connected be-

tween the circular cylinder and the walls of the trough

and propagation is along the axis of the cylinder.

The practical difficulties involved in constructing co-

axial slotted lines and the application of ‘(slab lines” to

the problem have been discussed in a paper by Wholey

and Eldred.1 These authors developed a solution for the

“slab line” using conformal mapping to match the outer

conductor everywhere and the inner conductor at four

points which was accurate to about 0.1 ohm for char-

acteristic impedances of the order of fifty ohms. Frankelz

treated both the “trough line” and the “slab line” using

conformal mapping for the case of an infinitely thin

center conductor and, although a different method is

1W. B. Wholey and W. N. Eldred, “A new type of slotted line
section, ” PROC. IRE, vol. 38, pp. 244-248; March, 1950.

Z S. Frankel, ~’Characteristic impedance of paralIel wires in rec-
tangular troughs, ” PROC. IRE, vol. 30, pp. 182–190; April, 1942.
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TROUGH LINE
Fig. l—The trough line.

used, the present work yields Frankel’s expressions plus

a correction term which vanishes for small wires.

Wheeler’ has recently treated the “slab line” using a

pair of line sources to represent his assumed field vary-

ing their displacement in order to match the bound-

aries.

In the present work the “trough line” is treated direct-

ly by a variational method with the “slab line” taken

as a special case. The solution has not been restricted

to lines in which the center conductor is placed exactly

half way between the parallel walls of the trough. The

final result for the characteristic impedance is pre-

sented as the sum of three terms, the first being the

“zero order” term of Frankel, the second a “second

order” correction term which vanishes as the center

conductor becomes small, and the third an ‘ioff-center”

term which is proportional to the square of the distance

the center cylinder is from the center line between the

parallel planes.

FORMULATION oI~ THE PROBLEM

It is a well known result of wave theory that a loss-

less, coaxial structure of uniform cross section propa-

gates all frequencies at the velocity of light and the

electric field at any cross section at a given instant is

identical in form to the electrostatic field that would

occur if a static charge were placed on the center con-

ductor. The characteristic impedance and velocity of

propagation of any unifor~m, two conductor, Iossless

transmission line are given by

s H. .4. Wheeler, “The transmission properties of a round wire
between parallel planes, ” Wheeler Monographs No. 19, Wheeler Lab-
oratories Inc., Great Neck, N. Y.; 1954.

ZO = (L/C) 1/2 ohms (1)

v = l/(LC) 1/2 meters per second (2)

where L is the inductance of tlhe line i n henries per

meter and C is the capacitance of the line in farads per

meter. The inductance L can be eliminated between (1)

and (2) giving

Zo = l/(vc) ; v = 2.99796 x I(Y m/see. (3)

The capacitance can then be found from the ratio of

electrostatic charge on the center conductor to the volt-

age between conductors which would result from this

charge. Let Q be the total charge per met:er on the cen-

ter conductor which is distributed around the periphery

with a surface density p(~) so that

Q = ~ 2“P(C+)W (4)
o

where b is the radius of the center conductor as shown

in Fig. 3.

The electrostatic field can be expressed in terms of a

Green’s function G(r’, 4’, r, 0,) for the region. This

function can be looked upon as the potential at point

r, ~ due to unit line charge at r’, 4’ [and of course sub-

ject to the boundary conditions that G(r’, all’, r, 4) =0

if r, I#J is a point on the wall of the trough]. U’sing this

representation the electrostatic field is given by the

potential function

v(7, o) = (l/e) ~ ‘“p(@’)G(b, 4’, r, O)bd+’ (5)
o

since the total charge in the region lies on~ the periphery

of the cylinder where r’= b.

The charge distribution p(4) is still unknown but is

subject to the restriction that, for points on the cylinder

(r= b), the potential must reduce to a constant value

for all 4. This leads to an integral equation for p(4) of

the form

s‘n’

Vo = (l/c) ~(@’)G (b, +’, b, @)b@J (6)
o

which can be solved using a variational method (Ap-

pendix I) to give a very rapidly converging expression

for the capacitance C.

THE GREEN’S FIJNCTION

The function G(r, 4, r’, 4’), which is interpreted as

the electrostatic potential in the region due to unit line

charge, must obey the same boundary conditions as

the desired potential function V(r, 4). These are,

namely, that it vanish on the walls of thl~ trough and at

large distances to the left of the page in Fig. 3. In addi-

tion the Green’s function must be symmetric in the

primed and unprimed coordinates. It is a simple mmtter

to verify that if G(r’, 4’, ~, 4) in (5) obeys
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– – (l(r$ – @’)V2G(r’, o’, r, O) – (7) which is stationary with respect to small variations in

the form of the function P(O) about its correct form. As

where V2 is the Laplacian operator in two dimensions outlined in the appendix, to use this method, a trial

and 8(? — r’) is the Dirac delta function, then V as function containing a number of arbitrary parameters is

given by (5) obeys the proper Poisson equation for the substituted for p(d) in (9). The trial function used in

problem, this problem is of the form

The function which obeys (7) and the proper bound-

ary conditions can be readily found4 and is expressible
,0(4) = (Q/47rb2)(l+al Cos ++cw cm 24 + . . . cr. Cos ?’@

in rectangular coordinates as +“”” +i31 sin @+132 sin 24+ 00 “ P. sin ?20). (10)

1

[
G(z’, y’, z, y) = ~ log.

1 – exp (i(7r/u) (y + y’) – (T/a) I * – ~’ I )
1– exp (i(7r/a)(y – y’) – (n-/a) I x – x’ I )

1 – exp (i(~/a)(y + y’) – (~,/a)(* + x’ – 2c))
– log, 1 (8)

1 - exp (i(T/u)(y – y’) – (~/a)(x + # – 2c))

In this formula a is the distance between the parallel

plates of the trough (see Fig. 2) and c is the distance

from the center of the cylinder to the bottom of the

trough. For the “slab line” c becomes infinite and the

second term of (8) approaches zero.

I

I

The more terms taken the more accuracy can one ex-

pect. Once (10) is substituted in (9) for p(~) the inte-

grals involved can be evaluated as explicit functions

(see Appendix II) of the known parameters a, b, c, and

~ (see Fig. 3) and the 2n parameters w s . . cYn and

i% “ .0 ~n. The amplitude factor Q/4~b2 cancels out

since it appears to the same power both in the numer-

ator and in the denominator of (9).

I

I
t-Y

1~.o
‘Y=o

x 1-c—

Fig. 3—The coordinates used in describing a trough line.

Fig. 2—The cross section of a slab line.

THE VARIATIONAL EXPRESSION

The variational expression for the problem is

Appendix I)

2V 2rSf A@’)G(b,0’,b,@)~(@)b2d@’d@

~/c= 0 0

[s02”~(@bd@]z

(see

(9)

1 This is found by assuming G(x’, y:, x, y) to be expressible as a
Fourier series in y and y’ with coeficlents which are functions of
Y and x’. The series is substituted in (9) and the resulting series
expressed in closed form.

When the integration has been carried out (9) can

be written in the form

where a. = 1 and Do = O by definition and Xi,h, Y] ,~, and

Z~,fi are the known functions defined in Appendix II and

tabulated in Table I which result from the integrations

involved in (9) when the trial function of (10) is inserted

for p(o). These turn out to be simple functions of the

parameters a, b, c, and 8, and some of the functions

used to develop the ‘(second order” approximations are

tabulated in Tables I and II.
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TABLE I

THE FUNCTION

J?.’ = Xk,f = (1/4T’) [’” (2” COS(j+’) G(b, +’, b, ~) COS(k+) d~’dc$

(c/a) inlinite
— —

0.000

+0. 06545 @/a)2

+0.0397887
– 0.06545 (b/a)~

0.000

+0. 0198944
–0.l130(b/a)i

TABLE II

Jo .’0

(c/a) = (3/4) (c/a) = (1/2)

–o .004491 (b/a)’ –O .02165 (b/a)

+0. 05840 (b/a)2 +0.03132 (b/a)’

+0.0397887 +0.0397887
–0.07250(b/a)’ –0.09958(b/a)2

–0.01109(b/a)8 –O .05421 (b/a)$

+0.0198944 +0.0198944
–0.1305(b/a)i –0.2010(b/a)’

169

(G/a) = (1/4)

–O. 1086 (b/a)

–O . 1206 (b/a)2

+0.0397887
–0.2515(b/a)’

–O. 3693 (b/a)3

+0.0198944
–1.092(b/a)’

(6/a)’. This approximation becomes exact as 8 ap-
SOME TYPICAL FUNCTIONS OF TEE TYPE

H
~i,k = ‘r 2*

cos (j+’) G(b, +’, b, +) sin (k+) Wd+ (c/a) = (1/2)
00

\

k
o 1 2

j ‘1

o 0.000 –0.1652(28/a)(fr/a) +0 .04493 (28/a) (b/a)’
0.000 +0. 04493 (’26/al(b/a)z –O. 1836( 28/a) (b/a)’

; 0.000 I +0.3009 (2d/a)(b/a)3 +0.05803 (23/a) (b/a)i

Eq. (11) can be differentiated with respect to the

parameters ~j and ~~ ~-ielding 2 (n + 1) linear, homo-

geneous equations of the form

o = ~ (akx~” + (hz~’~) j = 1,2,3, . . . n. (12b)
k=O

When the fact that co= 1 and f10 = O is used these reduce

to 2n nonhomogeneous equations which can be solved

for the CW’S and ~fi’s by standard methods. Substitution

back into (11) then yields an expression for the capaci-

tance C.

PRACTICAL SOLUTIONS

For the results presented here n was taken to be 2

yielding four equations in four unknowns,

al.X1z + azX1,2 + /31Y111 + /3zY1,’ = – X’,” (13a)

alX2,1 + aZXa,2 + &Y21 + ~zY’,’ = – X’” (13b)

alY’1 + C22Y2,1 + plz’1 + &Z” = – Yo’ (13C)

alYl,’ + c@’,’ + &Z’12 + &Z2,2 = – Y“,z. (13d)

It can be shown that all of the functions Yi,’ and all

of the coefficients 13~are proportional to (ti/a) where ~

is the distance by which the cylinder is ‘[off-center)’ in

Fig. 2. This means that, for small values of (~/a), the

third and fourth terms in ( 13a) and (13b) may be neg-

lected introducing an error in al and az of the order of

preaches zero and using it assumes that moving the

cylinder “off-center” does not make an appreciable

change in the amplitudes of the cosine terms in the

series for the charge distribution n p(~).5 The values of

CM and cq found from (13a) and (13b) can then be sub-

stituted into (13c) and (13d) from which~ D1 and & can

be found using Cramer’s rule in terms of a 2 X 1! de-

terminant. Since (11), which is used to find the ca-

pacitance C’, is stationary with respect to variations in

the parameters a~ and ~~ this approximation is valid to

within an error of the order of (ti/a)4.

When the cylinder is exactly centered between the

parallel walls of the trough the second order approx-

imation, given by (11) with n taken equal to 2 and using

(3) for the relation between the characteristic imped-

ance and the capacitance, is simply

Zo = Ozf.s(xo,o + 2C21X0’1+ 2a2x’3’2+ 2ala2xl’2

+ (CU)2X’J+ (a,)’xZ’Z). (14)

where ZO is the characteristic impedance of the line in

ohms and al and CW, using the approximations of the

preceding paragraph, are given by

X’jo x’,’

Xl,l X1,2

X2,1 p,2 I
X1,1 Xl, o

I

X2$* X’, o

Xl,l X1,2 “

i X2,1 X2,2
i

(15a)

(15b)

s The function H J, however, changes by order (~/a)2 when the
cylinder is moved “off-center” and this change must be taken into
account because the variational expression is stationary only with
respect to variations in the coefficients ai and Bi and not with respect
to changes in the integrals Xi,k, YJJ, and Zj,k.

~ Zf, is the wave impedance of free space taken in the present work.
to be 376.735. This is based on Michelson’s value (1926) for the
velocity of light in free space, 2.99796X 10s m/r. Other conditions
should be adjusted accordingly from the values found from these
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The function XOO which is the “zero-order” term is

just that found by Franke12 for a thin wire in a rectan-

gular trough namely

Xo.o = ;IogG’anh;) (16)

while the other X~k’s which appear in the formula are

given in Table I.

SIMPLIFIED FORMULAS

When (15a) and (15b) are substituted into (14) an

explicit formula for the characteristic impedance re-

sults. Several terms of the initial substitution cancel

out and, when the expressions in Table I are used for

the x~,~’s, (14) becomes

[ (~tanh~)20 = Zfs (1/2r) loge

where R = @/a)2.

The coefficients Ni and Di are given in Tables III and

IV respectively for different values of the ratio c/a.

TABLE III

THE COEFFICIENTS Ni TO BE USED IN (17) AND (19) FOR THE
CALCULATION OF THE SECOND ORDER CORRECTION TERM

\ ;1

\

.
1 2 3

(c/a)

1/4 –O .2966 –0.7312 +8.680
–0.01177 –0.04932 +0.3353

;$2 –O .0005068 –0.1714 +0.3220
infinite 0.000 –0.2153 0.000

T.ABLE IV

THE COEFFICIENTS D, TO BE USED IN (17) AND (19) FOR THE
CALCULATION OF THE SECOND ORDER CORRECTION TERM

(J-’J11213
1/4 –6.321 –54.90
1/2

+174.8
–2.503 –10.11

3/4
+ 21.58

–1.822 – 6.559 + 11.80
infinite 0.000 – 5.682 0.000

For the “slab line” [(c/a) infinite], the numerator

and denominator of the second term on the right hand

side of (17a) have a common factor and the expression

further simplifies to

[

2a

()

0.2153R2
20 = Zfs (1/2?r) log. ~ –

1 – 5.682R2 1
(17b)

where, again, R = (b/a)2.

OFF-CENTER CORRECTIONS

Perhaps the most interesting result of this investi-

gation is the formula for the change in characteristic

impedance which results when the cylinder is moved

slightly ‘(off-center” from between the parallel planes.

When 8 in Fig. 2 is not equal to zero the coefficients

1% and /32 in (13a) to (13d) do not vanish and when the

series (11 ) for e/C is terminated for j,k = 2, additional

terms to those given in (14) result in the expression for

e/C all of which, to within O(~/a)4 are proportional to

(8/a)2. In addition to these extra terms all of the

Xi,k’s undergo a change of order (3/a)2 also which must

be taken into account. This change can be included with

the extra terms which result when the cylinder is moved

“off-center” allowing the total change in characteristic

impedance, which is always less than zero, to be writ-

ten in the form

AZO = – a [(b/a), (c/a)] x (d/a) 2. (18)

The parameter a which depends on the ratio b/a and

c/a has been calculated for a set of values of these ratios

and graphs, sufficiently accurate for purposes of compu-

tation, of a vs b/a with c/a as a parameter are given in

Fig. 5.

FURTHER CALCULATIONS

Tables have been prepared of the functions X~,~,

Yj,k, Zj,k and AXi,k [the change in the value of X~Sk

when the cylinder is moved off center by an amount 6

is AXi,k x (d/a)z] up as far as j,k =4 enabling the cal-

culation of a fourth order approximation. All of these

functions are simple one or two term polynomials in the

ratio (b/a).

A fourth order approximation has been worked out

for the “slab line” in the region of fifty ohms. The dif-

ference between the second order and fourth order

answers was only 0.001 ohms or one part in fifty

thousand.

CONCLUSION

Second Order Formulas

The characteristic impedance of the trough line illus-

trated in Fig. 1 is given by

‘0=’zfs[(’’2T)’0&’anh
NIR + .V2R2 + N~Rs

+
1 + DIR + D2RZ + D3@ 1

- ~[(~/a), (c/a)] X (~/~)2ohms, (19)

where R = (b/a)2 and b is the radius of the cylinder, a

is the spacing between the parallel walls of the trough,

c is the distance from the center of the cylinder to the

bottom of the trough and 8 is the distance the center of

the cylinder is displaced from the center plane between
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the parallel plates. The coefficients N~ and -DI are given from (18), the maximum allowable error in the position-

ing Tables I I I and IV respective y and the coefficient ing of the cylinder is given by

a(b/a), (c/a) is plotted in Fig. 5 as a function of (b/a)

with (c/a) as a parameter. The second term on the right ~=ax 21’2
hand side of (19) multiplied by Zf, = 376.735) is plotted ()

(21)
c1

in Fig. 4 to a logarithmic scale,

where a can be found from Fig. 5 as a fun~ction of (b/a)

8 ,/ , I and (c/a).! .1- 1 I I
z] 1

! / I I I

/ We/Q= 3b4 ] Ill

I /1 4

4LL-J--Wa= Spacing ‘between parallel walls

Fig. 4—The second order correction term for the trough line. Value
found from this graph are to be subtracted from the zero orde~

ms
, I 1 1 1 I ~. r #l f

H
20

, Ch= 1/4 I I +–t-t--i

I
o“

I t I I I I ~.—x
0.1 0.2 0.3 0.4 0.5

Fig. 5—The “off-center” correction coefficient. The coefficient a
found from this graph, when multiplied by (6/,z)~ where a is the
spacing between the parallel planes, gives the correction term to
be subtracted from the regular formula for the characteristic im-
pedance whenever the center of the cylinder is off the center
line between the parallel planes by an amount 8.

logarithmic term,

““gl”g.[(::)’anh:l

For the “slab line” [(c/u iufinite ] (19) reduces

‘0=’z’@2m)10’e(2-1R%2LI
— a(b/a) X (d/a) 2 ohms

where R = (b/a)2.

As (b/a) approaches ~ the results break down

APPENDIX I

THE VARIATIONAL EXPRESSION

to
The problem under consideration is the solution of an

integral equation of the form

s

2T

v’ = P(4WW, +’, b, ~)bd~)~. (22)

(20) o

Morse and Feshbach7 treat the general problem of find-

since ing a solution to the equation

the charge distribution p(~) in the electrostatic model

used for calculating c/C approaches the delta function

~(~ ~ (n +~)r). The Fourier series for such a distribu-

tion has all of its terms of equal magnitude and cutting

the series in (10) off at w = 2 represents a very poor ap-

proximation. In practice, however, such large cylinder

sizes should be avoided as the capacitance depends very

critically on the nature of the surface in the region where

the cylinder and the v.all almost touch.

Tolerances on the Centering of the Cylinder

If 20 is the maximum variation in the characteristic

impedance of a trough line which can be tolerated then,

by a variational method where y!! is the unknown func-

tion and t and $11 are differential or integral operators.

If one sets

+ = P(+), (24)

sZr

.43(4’) = 1/. P(OW, ~’, 6, @)wf (25)
o

7 P. M. Mores and H. Feshbach, “Methods of Theoretical Physics”
McGraw-Hill Book Co., Inc., New York, N. Y., Ist cd., vol. 2, p.
1106; 1953.
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which is a function of b in the region O S @ 527r,

s

%U

m(+) = P(+’)bd@’ (26)
o

and h = l/C where C = Q/ VO, the static capacitance,

then (23) becomes

sZr

I/e P(4’)G(b, 4’, b, @)bdd’
o

. (l/c) ~ 2Tp(qY)bd@’ = V. (27)
o

which is the integral equation to be solved. C or l/C is

the quantity desired and it is shown by Morse and

Feshbach8 that

F r W)d

C?[h]= (? “ =0 (28)

f@Z(~)dV
LJ -1

with respect to arbitrary variations of # about its cor-

rect value. Interpreting ~, l?, m, and A as in (24)–(26)

this yields

[18;

2r 2rSs,d@)d#)b2@@’
o 0 1

(29)

This means that (9) is stationary with respect to arbi-

trary variations in the form of p(g5) about its correct

form.

To use this method a trial function is put in (9) for

P(4) which contains n arbitrary parameters m - “ . CM.

Differentiating with respect to these parameters and

equating the results to zero leads to n homogeneous,

linear equations in the n unknown CJs. g

APPENDIX II

EVALUATING THE INTEGRALS INVOLVED IN THE

VARIATIONAL METHOD

When p(q5) k (9) is replaced by the series of (10) and

use is made of the orthogonality properties of the trig-

onometric functions to give 4~2b2 for the denominator

of the right hand side of (9), e/C can be expressed by

the series in (11) where integrals of the following type

are encountered

8 Ibid., p. 1109 (9.4.8).
g Ibid., p. 1107.

Xi, k

1 2T Z’n’

. —- Ss4T~ o 0
COS (j@)G(b, ~’, b, 4) COS (k@ ’)d@d@’ (30)

1 2* 2T

.— Ss cos (j@)G(b, o’, b, #J) sin (kd’)d@d@’ (31)
41r2 ~ il

1 2T 2?r

— SJ–Goosin (j~)G(b, o’, b, O) sin (k@ ’)d@d@’. (32)

These integrals depend on the parameters j and k and,

through the Green’s function G(b, ~’, b, @), on the di-

mensions a, b, and c of the transmission line.

These integrals can be evaluated by removing the

singularity from G(r’, +’, r, @) at r =Y’, cj = @’ and using

the following lemma. 1~ v~(r,q) = O

= 2m Limit +(7, @) KG(). (33)
7-.0,3+0

The differentiations involved, if carried out directly,

are rather messy. However it has been found possible

to express the results of this lemma in terms of a set of

functions, represented by a finite power series, the coef-

ficients of which obey a simple repetition formula.

Putting

and

(34)

(;?-’2)‘i,”(z) = $ go’(z) (35)
z

it can be shown that

fkn(z) = i Cm’[.$O”(z) ]~(1 + go”(z)), (36)
m=l

where the coefficients c%~ obey the repetition formula

k=l.c1 , ~kb= ~~.., and c~k = rn(c~-lk-l + c~~–l).

For special values of the argument z, (36) is of a par-

ticularly simple form. For example, one of the functions

which occurs in applying this lemma is

i+ h-l ~m?+k+l

&i+7c–1(*/a)(u) = ~ (–1)~ —
2 rn+l -

(37)
m==1

It is beyond the scope of this paper to go into the details

of these functions beyond pointing out, as seen from

Table I, that integrals of the types under consideration,

when evaluated in this way, come out as simple poly-

nomials in the ratio (b/a).


